

Research Actions on Noise Simulation for Sonic Boom

Dr. Ludovic Wiart
Aerodynamic Research Engineer
Expert in engine integration aerodynamics, ONERA
France

- Introduction
- Past research actions on sonic boom at ONERA (academic)
- Ongoing institutional collaborations
 - DLR/ONERA/JAXA
 - NASA/ONERA
- European project RUMBLE
- Conclusions and Perspectives

IF/IR Introduction

- Sonic boom is identified as a key-issue for any future supersonic civil aircraft
 - Significant progresses achieved during last decade toward low-boom shapes
- A topic calling for international/global collaborations
 - A societal/global challenge
 - At pre-competitive stage
 - Regulatory aspects under discussion in ICAO CAEP/SSTG WG1
- Strong need for scientific data, knowledge and validated simulation methods for:
 - Sonic boom source prediction (near-field)
 - CFD methods, mesh dependency/adaptation, ...
 - Sonic boom propagation (far-field)
 - Atmosphere variability, turbulence, aircraft maneuver
 - Human response:
 - Psychoacoustic -> appropriate metrics
 - Other possible nuisances (building vibrations, ...)

Past research actions on sonic boom at ONERA (academic)

PhD ONERA/INRIA

Propagation code

ONERA/STANFORD

French national projects (COS, DGAC)

• EU projects (HISAC, ATLLASII)

Aerodynamics /sonic boom optimization (A. Minelli, 2010-2013):

 Advanced multicriteria optimization techniques : Nash Games, Multiple Gradient Descent Algorithm (J.A. Désidéri)

ONERA/JAXA

Analysis of DSEND#1 experiments :

• QSST DESIGN by inverse design method

Parametrisation of JAXA SSBJ

Use of Stanford SU² code for sonic boom/aero optimizations

Long term collaboration with F. Coulouvrat (UPMC) since 2000:

Application of ONERA sonic boom prediction tools on configuration Lockheed-Martin

ONERA/AIAA

AIAA Sonic Boom Prediction Workshop:

- Participation to the first AIAA SBP workshop in collaboration with Dassault Aviation and INRIA
- Validation of CFD-based prediction capabilities

Adjoint based optimization of sonic boom (SU²)

Sonic boom evaluation of LMCO configuration

Ongoing institutional collaborations on sonic boom

DLR/ONERA/JAXA collaboration (2016 +):

Sonic-boom assessment for future supersonic en-route noise standard

Ongoing institutional collaborations on sonic boom

NASA/ONERA collaboration (2018 +)

- Motivations:
 - consolidate AIAA SBPW2 exercise through bilateral (more detailed) NASA-ONERA results comparisons
 - Possible contribution to the preparation of AIAA SBPW3
- Code to code verifications of sonic boom simulation tools:
 - Far-field propagation
 - Near-field to far field matching (multipole)
 - Sonic boom metrics

What is RUMBLE?

RegUlation and norM for low sonic Boom LEvels

H2020 MG-1-2-2017 "Reducing Aviation Noise"

Europe – Russia cooperation

Duration: 36 months (Nov. 2017 – Oct. 2020)

Coordinator: Airbus Central Research & Technology – 13 European partners – 6 Russian partners

Purpose: Producing the scientific evidence requested by national, European and international regulation authorities to determine the acceptable level of overland sonic booms and the appropriate ways to comply with it.

Budget: 13 M€

Funded by the European Commission and the Russian Federation

With the participation of EASA and DGAC France

SUMMARY of the ONERA Activity

Human response and metrics

FIF/IR Conclusions and Perspectives

- Sonic boom topic calling for international collaborations :
 - Societal challenge
 - Regulatory aspects (ICAO CAEP/SSTG WG1 activities)
- In Europe, the ongoing RUMBLE project is part of a more general roadmap
 - Work Programme 2020 « MG-3-05-2020: Towards a high-speed global air transportation demonstration"
 - → Int'l Cooperation explicitly encouraged
- Opportunities for IFAR actions :
 - IFAR "Noise Working Group" (leader: ONERA) to be soon extended to noise concerns by SST & UAM vehicles

Thank you for your attention!

2018 ICAS—IFAR Award Ceremony

Presented By
Susan Ying (ICAS President)
Michel Peters (NLR)

To

Dr. Rei Yamashita (The University of Cambridge)

- → A global award to honor an individual who has made a significant contribution to Aeronautical Science within his/her doctoral thesis (Ph.D. or equivalent)
- → Eligibility:
 - Within 2 years of the date after the PhD was obtained
 - Under 40 years old at nomination date
- → The Award Winner is selected by IFAR Evaluation Team & ICAS Honors & Awards Committee out of candidates nominated by IFAR member organizations worldwide
- → Launched in 2016

Dr. Rei Yamashita

The University of Cambridge

Japan Society for the Promotion of Science (JSPS) Overseas

Research Fellow

Doctoral thesis: "Full Field Simulation for Sonic Boom Propagation through Real Atmosphere"

31st Congress of the International Council of the Aeronautical Sciences Belo Horizonte, Brazil

